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The process of destruction of a moist porous specimen exposed in a high-temperature medium is considered. 

The developed simplified mathematical model of the process is used to obtain a thermal decomposition curve 

for a spherical specimen with a microcapillary structure. 

Introduction. When a moist porous body is placed in a medium whose temperature is much higher than 

that of the saturated vapor, pore liquid in the near-surface layer starts to boil intensely. As internal evaporation of 

the pore liquid proceeds, the boundary of the initial boiling advances into the bulk of the specimen. 

On the surface of material subjected to laser radiation a similar effect where the material itself starts to 

boil and the boundary moves into the bulk of the specimen occurs [1-3 ]. In this case the internal temperature 

distribution depends substantially on evaporation inside pores. Since energy losses caused by evaporation prevent 

an increase in the internal temperature [4 ], the temperature tends to its equilibrium value, equal to the temperature 

of the saturated vapor at a pressure of 0.1 MPa. According to [4 ], internal evaporation not only brings about loss 

of material mass but also can induce destruction of the specimen when the pressure in the pores exceeds the ultimate 

strength of the material. 

Resistance to mechanical destruction decreases in moist porous bodies as the moisture content rises due to 

a decrease in the adhesive forces between individual particles. Therefore a sharp drop in the temperature and 

moisture content between the surface and central layers of the porous body induced by intense heating initially 

causes cracking of the surface and then distortion of the structural integrity. Thus, in the case of a high initial 

moisture content of a material, destruction of a specimen is caused primarily by rapid expansion of vapor in the 

pores, while in heating of dry material internal evaporation of the pore material itself is decisive [4 ]. 

In the present work a simple mathematical model is used to investigate the destruction of a spherical 

specimen made of a moist (a moisture content of about 25%) microcapillary material, assuming that the internal 

temperature of the vapor is constant and equal to the saturation temperature at 0.1 MPa under high-temperature 

heating. 
Strength of Moist Material. It is clear that the ultimate strength of a moist porous specimen is substantially 

lower than that of dry material due lower adhesive forces between the particles and it depends on the initial moisture 

content and porosity of the specimen. 
For a microcapillary structure the relation between the length of a capillary and radius of the trunk has 

the form [4 ] 

dr/d l  = r / l  << 1, 

and therefore for r < 0.1 /zm it can be assumed that dr/dl  = 0 to simplify substantially the description of the 

internal structure of the test specimen. For convenience the simplest model for the structure of the capillary-porous 

material will be used. The moist porous material will be represented as a body with cylindrical pores. Capillaries 

emerging on the surface will be assumed to be uniformly distributed and to have the same diameter of the mouths. 

In initial boiling of the pore liquid, an unsteady state of the thermodynamic steam-water system develops, 

which is accompanied by pressure fluctuations. As is known from statistical thermodynamics, in this system the 
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pressure fluctuations are proportional to the heat capacity c = Ou/OT and in an isothermal state their magnitude is 

equal to or higher than the absolute pressure P. Then, in what follows, the quantity P in the strength condition for 

a cylindrical wall [5 ] 

cr = P r / 6  < [a] ,  (1) 

will mean a fluctuation of the order of P rather than an absolute pressure of value P. In relation (1) r is the channel 

radius. This suggests that the minimum thershold pressure required for destruction of the capillary walls has the 

form 

Pmin = [o'] 6 / r .  (2) 

When pores in a spherical porous specimen are distributed uniformly, the thickness of the capillary walls 

is determined by 

= 2 R / N  I/2 - r ,  (3) 

where N is the number of pores emerging onto the surface; R is the radius of the spherical porous specimen. The 

void fraction 0 v is defined by the ratio Ov = Vp/V,  and the surface porosity OSx, by the ratio 0 s = S p / S ,  where V is 

the total volume. 

We will assume that Ov = Os x. Then, the relation between the capillary dimensions and the porosity has 

the form 

6 / r = O - ~ -  1. (4) 

The threshold pressure of the moist capillary body will be expressed by 

P = Pmin f (W), 

where f(W) is a decreasing function of the moisture content. The function f(W) can be expanded in a Taylor series: 

f (W) = f ( W =  O) + f ' ( W =  O) W + . . .  

Taking only the first and second terms in the series, we obtain an expression for the threshold pressure of the 
moist body: 

e *  = (1 - w )  = ( o  - l )  (1 - w ) ,  (5) 

where W = ml iq /m  is the moisture content of the porous material. It follows from Eq. (5) that an increase in the 

initial moisture content and porosity of the body leads to a decrease in its mechanical strength in reference to the 

destructive effect of intense vaporization. As soon as the pressure of the saturated vapor reaches the threshold value 

P* = Ps, the body is fractured. Substitution of Ps for P* in (5) gives the threshold moisture content sufficient to 

induce fracture of the material due to the destructive effect of internal evaporation of the pore liquid: 

W* = 1 - ( P s / [ a l ) / ( - O  - 1 ~ -  1). (6) 

The plot t(W*) of the destruction time t* versus the moisture content W* will be called as the 

thermodestruclion curve. To determine the mechanism of the destruction process, Eq. (5) should be supplemented 

by the law governing changes in the moisture content. 

Change in the Moisture Content of a Porous Material in the Case of Thermal Shock. At a high ambient 

temperature, water in the mouths of emergent pores starts boiling almost instantaneously. As the liquid phase in 
the pores of a specimen is heated up, it transforms to the gas phase as a result of boiling and a boiling surface with 
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the radius Rb(t)  arises in the bulk of the specimen. It moves with a velocity Ub. The heated volume will be divided 

arbitrarily into two regions: region 1 is the space filled with subcooled liquid, r < Rb; region 2 is the space filled 

with vapor, r > R b. 
The radius of the boiling surface depends on the moisture content as follows: 

R 3 (t) = 3rnp W/Pliq (1 - IV) 4zr, (7) 

where mp is the mass of the dry porous material; Pliq is the density of the pore liquid. 

Determination of the law governing the behavior of the moisture content requires knowledge of the 

displacement of the interface radius Rb into the bulk of the specimen. Below we present a calculation of R b for 

capillary-porous materials with a microcapiUary structure, i.e., with a pore radius smaller than 0.1/zm. In this case 

the transfer is molecular, and no gasdynamic flow, either laminar or turbulent, can arise in a microcapillary. Under 

a pressure differential, vapor molecules in these capillaries move independently of one another, colliding constantly 

with the pore walls [6 ]. 
Under the assumption of the thermal equilibrium between the vapor and the body, the number of molecules 

leaving a capillary per unit time is equal to the number of collisions with a wall surface that is equal to the area of 

the capillary mouth. An ordinary statistical calculation gives the relation [6 ] 

3 
(Pe - Ps) r (8) 

a m y ~ a t  = (8/3) (4ZRvTs)t/2 (R - R b ( t)) '  

where Ts is the saturation temperature; Ps is the saturated vapor pressure; Pe is the ambient pressure. The vapor 

mass generated in a capillary channel is equal to 

r 2 (R R b (t)), mv = 3~ fly (9) 

where Pv is the vapor density. 
Using relation (9) and integrating Eq. (8) between R and Rb(t), we obtain 

R b(t) = R - ( D  b01/2, Db= 4 ( P e - P s )  r (10) 

3 (4~ R v Ts)l/2pv 

Equation (10) is the law governing changes in the boiling boundary with time. Equation (10) shows that  the 

proportionality factor (D b) 1/2 depends both on physical properties of the body and its structure and an ambient 

parameters, and an increase in the internal capillary pressure suppresses the evaporation process in the pores. A 

similar suppression effect due to an increase in the internal pressure was found in [4 ], the authors of which studied 

internal evaporation in dendritic porous structures [7, 8 ]. 
The time needed for complete boiling of the subcooled liquid filling the cold core of the specimen is tc = 

(R2/Db) .  Differentiation of (10) gives an expression for the velocity of the surface displacement: 

U b = d R b / d t  = - 0.5 (Db / t )  1/2 . (11) 

It should be noted that in real situations complete heating of the cold core to the saturation temperature is impossible 

without disruption of the structural integrity since the heating time is sufficient to destroy the surface layers of the 

specimen. 
In the present work microcapillary materials with a pore radius smaller than 0.1/zm were investigated. In 

this case the displacement velocity of Rb should be determined by diffusion of vapor [4 ], which is Knudsen diffusion 

with a characteristic dimension equal to the pore radius. In Eq. (10) the proportionality factor is a diffusion 

coefficient similar to the Knudsen diffusion coefficient [9 ] 
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Fig. 1. Destruction curve for a spherical specimen subjected to thermal shock. 

= r ( 2 T / M )  . Db n (2/3) 1/2 

Destruction of a Moist Porous Specimen Subjected to Thermal Shock. Now, knowing the strength condition 

of the moist material, the law describing changes in the moisture content, and the path of the phase interface, it 

is easy to find the destruction curve for a moist porous specimen subjected to thermal shock. Simultaneous solution 

of Eqs. (5), (6), and (10) gives the time of destruction in the form 

t* = t c (1 - ( w * ) ) ,  (12) 

90 (W*) -~ ( l /R)  (0.239mp W*/1 - W*) Pliq)l/3 , 

W *  = 1 - P s / [ a ]  (0 -1/2 - 1). 

This is the equation of destruction, which describes approximately the unsteady-state destruction process in a moist 

porous material heated to high temperatures. The plot of t*(W) is shown in Fig. 1. 

Conclusions. The present model can be used to estimate the time and conditions of destruction of a moist 

specimen and the effect of the operating parameters on the thermal shock-induced fracture process and to 

investigate the behavior of the moisture content of a specimen under particular conditions. 

This model can be used effectively in the case where intense internal vaporization is the main factor of 

destruction. This situation is possible only for a certain initial moisture content of the specimen. 

Further studies should involve a more realistic approach to the description of structural properties of porous 

materials and, in addition, they should be concerned with the joint effect of pyrolitic decomposition and internal 

evaporation of the pore liquid on the destruction dynamics in porous materials subjected to thermal shock. 

The present analyis can be useful in engineering calculations of particular technological processes using 

moist materials. This theoretical method can be used for rapid estimation of the destruction time for a moist porous 

specimen under high-temperature heating with different operating parameters. Moreover, the present method can 

be used to estimate the probability of destruction of moist porous materials subjected to high-power laser radiation, 

which is of practical interest in applications of lasers. 

N O T A T I O N  

Db, vapor diffusivity, m2/sec; M, molecular mass of gas, kg; m, mass of moist material, kg; rap, mass of 

dry material, kg; rrtliq, mass of pore liquid, kg; P, vapor pressure, Pa; Pmin, minimum threshold pressure for 
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capillary walls, Pa; Rb, radius of the vapor-liquid interface, m; Rv, gas constant for vapor, J /(kg.  K) ; r, pore radius, 
m; S, surface area of a specimen, m2; S 0, cross-secti0nal area of a pore, m2; T, temperature of vapor in capillaries, 
K; t, time, sec; tc, time of complete boiling of pore liquid, sec; V, volume of a specimen, m3; Vp, volume of pores, 
ma; W, moisture content of material per unit mass; Ub, velocity of displacement of the phase interface, m/sec;/9, 
density, kg/m3; or, stress, Pa; [cr], limiting tensile strength of dry material, Pa; 6, thickness of capillary walls, m; 
0, material porosity. Subscripts and superscripts: *, destruction; b, boiling; e, environment; liq, liquid; p, porous; 
s, saturated; v, vapor. 
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